feat: 셀레니움 선택적 사용 및 폴백 메커니즘 추가

This commit is contained in:
2025-08-28 11:40:12 +09:00
parent ba4393c906
commit 59d213ab4a
4 changed files with 144 additions and 65 deletions

View File

@@ -95,6 +95,12 @@ class AIAgent:
model_settings = self.config.get('model_settings', {})
use_quantization = bool(model_settings.get('use_quantization', False))
# 양자화 비트/오프로딩 옵션
try:
quant_bits = int(model_settings.get('quantization_bits', 8))
except Exception:
quant_bits = 8
cpu_offload = bool(model_settings.get('cpu_offload', False))
torch_dtype_cfg = str(model_settings.get('torch_dtype', 'auto')).lower()
# dtype 파싱
@@ -114,20 +120,7 @@ class AIAgent:
if not model_source:
raise RuntimeError("모델 경로/이름이 설정되지 않았습니다.")
# quantization 설정 (가능한 경우에만)
quant_args = {}
if use_quantization:
try:
from transformers import BitsAndBytesConfig
quant_args["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
print("8bit 양자화 적용")
except Exception as _:
# transformers/bitsandbytes 호환 문제 시 양자화 비활성화
print("bitsandbytes/transformers 호환 문제로 양자화를 비활성화합니다.")
quant_args = {}
# (이전) quant_args 경로 제거: load_kwargs에서 직접 처리
# 메모리 제한/오프로딩 설정
mm_cfg = model_settings.get('max_memory', {}) if isinstance(model_settings.get('max_memory', {}), dict) else {}
@@ -167,11 +160,28 @@ class AIAgent:
if max_memory:
load_kwargs["max_memory"] = max_memory
# use_quantization=True면 8bit 우선 시도 (항상 레거시 플래그 사용)
# use_quantization=True면 4bit 우선, 아니면 8bit 레거시 플래그 사용
if use_quantization:
load_kwargs["load_in_8bit"] = True
load_kwargs["llm_int8_enable_fp32_cpu_offload"] = True
print("8bit 양자화 적용 (레거시 플래그)")
if quant_bits == 4:
try:
from transformers import BitsAndBytesConfig
load_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=__import__('torch').bfloat16
)
print("4bit 양자화 적용 (bnb nf4)")
except Exception as _:
load_kwargs["load_in_8bit"] = True
if cpu_offload:
load_kwargs["llm_int8_enable_fp32_cpu_offload"] = True
print("4bit 미지원 → 8bit(레거시)로 폴백")
else:
load_kwargs["load_in_8bit"] = True
if cpu_offload:
load_kwargs["llm_int8_enable_fp32_cpu_offload"] = True
print("8bit 양자화 적용 (레거시 플래그)")
self.model = AutoModelForCausalLM.from_pretrained(
model_source,
@@ -206,11 +216,11 @@ class AIAgent:
except Exception as e_noq:
print(f"비양자화 재시도 실패: {e_noq}")
# 2b. 8-bit 양자화로 재시도 (가능 시)
# 2b. 양자화로 재시도 (4bit 우선, 아니면 8bit)
loaded = False
try:
print("8bit 양자화로 재시도합니다...")
print("양자화로 재시도합니다...")
self.tokenizer = AutoTokenizer.from_pretrained(model_source, trust_remote_code=True)
# config 재생성 및 quantization_config 제거
cfg = AutoConfig.from_pretrained(model_source, trust_remote_code=True)
if hasattr(cfg, 'quantization_config'):
try:
@@ -224,20 +234,31 @@ class AIAgent:
offload_state_dict=True,
trust_remote_code=True,
config=cfg,
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
)
if dtype is not None:
retry_kwargs["torch_dtype"] = dtype
if max_memory:
retry_kwargs["max_memory"] = max_memory
if quant_bits == 4:
from transformers import BitsAndBytesConfig
retry_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=__import__('torch').bfloat16
)
else:
retry_kwargs["load_in_8bit"] = True
if cpu_offload:
retry_kwargs["llm_int8_enable_fp32_cpu_offload"] = True
self.model = AutoModelForCausalLM.from_pretrained(model_source, **retry_kwargs)
except Exception as e_int8:
print(f"8bit 재시도 실패: {e_int8}")
loaded = True
except Exception as e_q:
print(f"양자화 재시도 실패: {e_q}")
if not tried_int8:
print("CPU로 폴백합니다.")
if not loaded:
print("CPU로 폴백합니다.")
try:
import torch, gc
torch.cuda.empty_cache()