feat: max_tokens 값을 131072로 증가하여 토큰 제한 확장

This commit is contained in:
2025-08-28 11:15:09 +09:00
parent f67f9a18aa
commit 57f9bba80e
3 changed files with 84 additions and 28 deletions

View File

@@ -2,6 +2,7 @@ import json
import os
from typing import List, Dict
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, pipeline
from transformers.utils import logging as hf_logging
from langchain_community.llms import HuggingFacePipeline
from langchain.agents import initialize_agent, AgentType
from langchain.tools import Tool
@@ -69,6 +70,11 @@ class AIAgent:
"""
# GPU 메모리 최적화 설정
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# Transformers 로깅 레벨을 낮춰 config __repr__ 경로로 인한 예외를 피함
try:
hf_logging.set_verbosity_error()
except Exception:
pass
model_settings = self.config.get('model_settings', {})
use_quantization = bool(model_settings.get('use_quantization', False))
@@ -124,12 +130,20 @@ class AIAgent:
# 1차 시도: device_map="auto" + max_memory 로 로드
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_source, trust_remote_code=True)
# config 사전 로드 후 리포의 quantization_config 키 제거 (MXFP4 등 회피)
cfg = AutoConfig.from_pretrained(model_source, trust_remote_code=True)
if hasattr(cfg, 'quantization_config'):
try:
delattr(cfg, 'quantization_config')
except Exception:
setattr(cfg, 'quantization_config', None)
load_kwargs = dict(
device_map="auto",
low_cpu_mem_usage=True,
offload_folder=offload_folder,
offload_state_dict=True,
trust_remote_code=True,
config=cfg,
)
if dtype is not None:
load_kwargs["torch_dtype"] = dtype
@@ -140,14 +154,17 @@ class AIAgent:
if use_quantization:
try:
from transformers import BitsAndBytesConfig
load_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
print("8bit 양자화 적용 (1차 시도)")
tmp = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
if hasattr(tmp, 'get_loading_attributes'):
load_kwargs["quantization_config"] = tmp
print("8bit 양자화 적용 (1차 시도, bnb 신 API)")
else:
# 레거시 API 시도
load_kwargs["load_in_8bit"] = True
load_kwargs["llm_int8_enable_fp32_cpu_offload"] = True
print("8bit 양자화 적용 (1차 시도, 레거시 API)")
except Exception as _:
# bitsandbytes 사용 불가 시 양자화 미적용으로 진행
print("bitsandbytes 사용 불가: 비양자화로 1차 시도 진행")
print("bitsandbytes 감지 실패: 비양자화로 1차 시도 진행")
self.model = AutoModelForCausalLM.from_pretrained(
model_source,
@@ -155,33 +172,66 @@ class AIAgent:
)
except Exception as e1:
print(f"device_map=auto 로드 실패: {e1}")
# 2차 시도: 8-bit 양자화로 재시도 (가능 시, 1차에서 적용 안된 경우)
# 2a. 비양자화로 다시 auto+offload 시도 (오류가 bnb/버전이면 이 경로로 성공 가능)
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_source, trust_remote_code=True)
cfg = AutoConfig.from_pretrained(model_source, trust_remote_code=True)
if hasattr(cfg, 'quantization_config'):
try:
delattr(cfg, 'quantization_config')
except Exception:
setattr(cfg, 'quantization_config', None)
retry_no_quant = dict(
device_map="auto",
low_cpu_mem_usage=True,
offload_folder=offload_folder,
offload_state_dict=True,
trust_remote_code=True,
config=cfg,
)
if dtype is not None:
retry_no_quant["torch_dtype"] = dtype
if max_memory:
retry_no_quant["max_memory"] = max_memory
self.model = AutoModelForCausalLM.from_pretrained(model_source, **retry_no_quant)
print("비양자화 재시도 성공")
except Exception as e_noq:
print(f"비양자화 재시도 실패: {e_noq}")
# 2b. 8-bit 양자화로 재시도 (가능 시)
tried_int8 = False
if not use_quantization:
try:
from transformers import BitsAndBytesConfig
print("8bit 양자화로 재시도합니다...")
self.tokenizer = AutoTokenizer.from_pretrained(model_source, trust_remote_code=True)
# config 재생성 및 quantization_config 제거
cfg = AutoConfig.from_pretrained(model_source, trust_remote_code=True)
if hasattr(cfg, 'quantization_config'):
try:
delattr(cfg, 'quantization_config')
except Exception:
setattr(cfg, 'quantization_config', None)
retry_kwargs = dict(
device_map="auto",
low_cpu_mem_usage=True,
offload_folder=offload_folder,
offload_state_dict=True,
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True
)
config=cfg,
)
if dtype is not None:
retry_kwargs["torch_dtype"] = dtype
if max_memory:
retry_kwargs["max_memory"] = max_memory
tmp = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
if hasattr(tmp, 'get_loading_attributes'):
retry_kwargs["quantization_config"] = tmp
else:
retry_kwargs["load_in_8bit"] = True
retry_kwargs["llm_int8_enable_fp32_cpu_offload"] = True
self.model = AutoModelForCausalLM.from_pretrained(
model_source,
**retry_kwargs
)
self.model = AutoModelForCausalLM.from_pretrained(model_source, **retry_kwargs)
tried_int8 = True
except Exception as e_int8:
print(f"8bit 재시도 실패: {e_int8}")
@@ -195,15 +245,21 @@ class AIAgent:
except Exception:
pass
# CPU 강제 로드
self.tokenizer = AutoTokenizer.from_pretrained(model_source)
# CPU 강제 로드 (config의 quantization_config 제거)
self.tokenizer = AutoTokenizer.from_pretrained(model_source, trust_remote_code=True)
cfg = AutoConfig.from_pretrained(model_source, trust_remote_code=True)
if hasattr(cfg, 'quantization_config'):
try:
delattr(cfg, 'quantization_config')
except Exception:
setattr(cfg, 'quantization_config', None)
self.model = AutoModelForCausalLM.from_pretrained(
model_source,
device_map={"": "cpu"},
torch_dtype=torch.float32,
low_cpu_mem_usage=False,
quantization_config=None,
trust_remote_code=True
trust_remote_code=True,
config=cfg
)
# 파이프라인 생성

View File

@@ -3,7 +3,7 @@
"model_local_path": "./models/gpt-oss-20b-base",
"google_drive_folder_id": "YOUR_GOOGLE_DRIVE_FOLDER_ID",
"google_credentials_path": "./credentials.json",
"max_tokens": 2048,
"max_tokens": 131072,
"temperature": 0.7,
"web_scraping": {
"max_pages": 100,

View File

@@ -1,6 +1,6 @@
transformers>=4.20.0
torch>=1.12.0
accelerate>=0.20.0
transformers>=4.44.0
torch>=2.1.0
accelerate>=0.33.0
requests==2.32.4
beautifulsoup4>=4.10.0
selenium>=4.0.0
@@ -10,7 +10,7 @@ google-auth-oauthlib>=1.0.0
google-auth-httplib2>=0.1.0
langchain>=0.0.200
langchain-community>=0.0.20
huggingface-hub>=0.15.0
huggingface-hub>=0.23.0
pandas>=1.3.0
openpyxl>=3.0.0
bitsandbytes>=0.41.0
bitsandbytes>=0.43.1