feat: 이벤트 로깅 시스템 추가 및 주요 컴포넌트 로깅 통합

This commit is contained in:
2025-08-28 12:24:55 +09:00
parent f0ddc5aebe
commit 4f3611e45d
9 changed files with 306 additions and 7 deletions

3
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,3 @@
{
"chatgpt.openOnStartup": false
}

View File

@@ -39,6 +39,13 @@ pip install -r requirements.txt
자세한 실행 방법은 `run_guide.md` 파일을 참고하세요.
## 로그
- 실행 시 `./logs/run_*.jsonl`에 구조화된 이벤트 로그가 저장됩니다.
- LLM 내부 추론(Thought) 로그는 기본 비활성화입니다. 필요 시 환경변수로 활성화할 수 있습니다:
- `AIWS_SHOW_THOUGHTS=1`
- 저장 파일 미리보기 로그: `AIWS_LOG_FILE_PREVIEW=1`
## 파일 구조
```

View File

@@ -9,6 +9,7 @@ from langchain.tools import Tool
from langchain.memory import ConversationBufferMemory
from web_scraper import WebScraper
from google_drive_uploader import GoogleDriveUploader, SimpleDriveSaver
from event_logger import get_logger, LangChainEventsHandler
class AIAgent:
def __init__(self, config_path='./config.json'):
@@ -85,6 +86,9 @@ class AIAgent:
memory=self.memory,
verbose=True
)
# 콜백 핸들러 구성 (이벤트 로깅)
logger = get_logger()
self.callback_handler = LangChainEventsHandler(logger) if logger else None
def load_model(self):
"""
@@ -349,9 +353,15 @@ class AIAgent:
주제별로 웹 검색 → 스크래핑 → 요약 → 저장까지 수행
반환: [{ topic, response }]
"""
from event_logger import get_logger
logger = get_logger()
results = []
for topic in topics:
if logger:
logger.log_event("topic_start", topic=topic)
urls = self._search_urls(topic, k=5)
if logger:
logger.log_event("search_done", topic=topic, url_count=len(urls))
collected = []
for u in urls[:5]:
data = self.web_scraper.scrape_website(u)
@@ -372,11 +382,18 @@ class AIAgent:
자료:
{snippet}
"""
summary = self.llm(prompt)
# LangChain 0.1+: __call__ deprecated → use invoke
if logger:
logger.log_event("llm_summary_start", topic=topic)
summary = self.llm.invoke(prompt)
if logger:
logger.log_event("llm_summary_end", topic=topic)
except Exception as e:
summary = f"요약 실패: {e}"
results.append({"topic": topic, "response": summary})
if logger:
logger.log_event("topic_done", topic=topic)
return results
@@ -432,6 +449,9 @@ class AIAgent:
AI 에이전트를 실행합니다.
"""
try:
if self.callback_handler:
response = self.agent.run(task_description, callbacks=[self.callback_handler])
else:
response = self.agent.run(task_description)
return response
except Exception as e:
@@ -459,7 +479,14 @@ class AIAgent:
"""
try:
response = self.llm(prompt)
# LangChain 0.1+: __call__ deprecated → use invoke
from event_logger import get_logger
logger = get_logger()
if logger:
logger.log_event("llm_topics_start", count=num_topics)
response = self.llm.invoke(prompt)
if logger:
logger.log_event("llm_topics_end", count=num_topics)
# 응답에서 주제들을 추출 (줄 단위로 분리)
topics = [line.strip() for line in response.split('\n') if line.strip() and not line.startswith(('1.', '2.', '3.', '-'))]
# 최대 num_topics개 반환

View File

@@ -0,0 +1,181 @@
import os
import json
import uuid
import datetime as _dt
from typing import Any, Dict, Optional
_LOGGER_INSTANCE = None
class EventLogger:
"""
Lightweight JSONL + console event logger for the app.
Avoids exposing LLM chain-of-thought by default; can be opted-in via config/env.
"""
def __init__(self, log_dir: str = "./logs", enable_file: bool = True,
show_llm_thoughts: bool = False, console_level: str = "INFO",
preview_saved_files: bool = False, preview_limit: int = 500):
self.log_dir = log_dir
self.enable_file = enable_file
self.show_llm_thoughts = show_llm_thoughts
self.console_level = console_level.upper()
self.preview_saved_files = preview_saved_files
self.preview_limit = preview_limit
self.run_id = _dt.datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + uuid.uuid4().hex[:6]
self.file_path = None
if enable_file:
os.makedirs(log_dir, exist_ok=True)
self.file_path = os.path.join(log_dir, f"run_{self.run_id}.jsonl")
def _now(self) -> str:
return _dt.datetime.now().isoformat(timespec='seconds')
def _console_enabled(self, level: str) -> bool:
order = ["DEBUG", "INFO", "WARN", "ERROR"]
try:
return order.index(level) >= order.index(self.console_level)
except Exception:
return True
def log_event(self, event: str, message: Optional[str] = None, **fields: Any) -> None:
rec: Dict[str, Any] = {
"ts": self._now(),
"run_id": self.run_id,
"event": event,
}
if message:
rec["message"] = message
if fields:
rec.update(fields)
# console (pretty one-liner)
if self._console_enabled("INFO"):
kv = " ".join(
f"{k}={str(v)[:120]}" for k, v in fields.items() if v is not None
)
line = f"[{rec['ts']}] {event}"
if message:
line += f" | {message}"
if kv:
line += f" | {kv}"
print(line)
# JSONL file
if self.enable_file and self.file_path:
try:
with open(self.file_path, "a", encoding="utf-8") as f:
f.write(json.dumps(rec, ensure_ascii=False) + "\n")
except Exception:
# Do not crash on logging errors
pass
def init_from_config(config: Dict[str, Any]) -> EventLogger:
global _LOGGER_INSTANCE
lg = config.get("logging", {}) if isinstance(config, dict) else {}
log_dir = lg.get("log_dir", "./logs")
enable_file = bool(lg.get("log_to_file", True))
console_level = str(lg.get("console_level", "INFO")).upper()
# env override for showing LLM thoughts
env_flag = os.environ.get("AIWS_SHOW_THOUGHTS")
show_llm_thoughts = bool(lg.get("show_thoughts", False)) or (str(env_flag).lower() in ("1", "true", "yes"))
from os import environ
preview_files = bool(lg.get("preview_saved_files", False)) or (str(environ.get("AIWS_LOG_FILE_PREVIEW")).lower() in ("1", "true", "yes"))
preview_limit = int(lg.get("preview_limit", 500)) if str(lg.get("preview_limit", "")).isdigit() else 500
_LOGGER_INSTANCE = EventLogger(
log_dir=log_dir,
enable_file=enable_file,
show_llm_thoughts=show_llm_thoughts,
console_level=console_level,
preview_saved_files=preview_files,
preview_limit=preview_limit,
)
_LOGGER_INSTANCE.log_event("run_start", message="Application run started")
return _LOGGER_INSTANCE
def get_logger() -> Optional[EventLogger]:
return _LOGGER_INSTANCE
# LangChain callback handler
try:
from langchain.callbacks.base import BaseCallbackHandler
except Exception: # pragma: no cover - fallback for newer versions
try:
from langchain_core.callbacks.base import BaseCallbackHandler # type: ignore
except Exception:
BaseCallbackHandler = object # minimal fallback
class LangChainEventsHandler(BaseCallbackHandler):
def __init__(self, logger: EventLogger):
super().__init__()
self.logger = logger
# Chains
def on_chain_start(self, serialized, inputs, **kwargs):
name = serialized.get("name") if isinstance(serialized, dict) else str(serialized)
self.logger.log_event("chain_start", name=name, inputs=_truncate(inputs))
def on_chain_end(self, outputs, **kwargs):
self.logger.log_event("chain_end", outputs=_truncate(outputs))
# LLMs
def on_llm_start(self, serialized, prompts, **kwargs):
if self.logger.show_llm_thoughts:
self.logger.log_event("llm_start", prompts=_truncate(prompts))
else:
self.logger.log_event("llm_start", message="prompt issued", prompt_count=len(prompts) if prompts else 0)
def on_llm_end(self, response, **kwargs):
try:
if self.logger.show_llm_thoughts:
texts = [g[0].text for g in response.generations] # type: ignore[attr-defined]
self.logger.log_event("llm_end", outputs=_truncate(texts))
else:
# token/length only when possible
usage = getattr(response, 'llm_output', None) or {}
self.logger.log_event("llm_end", message="llm completed", meta=_truncate(usage))
except Exception:
self.logger.log_event("llm_end")
# Tools
def on_tool_start(self, serialized, input_str, **kwargs):
name = serialized.get("name") if isinstance(serialized, dict) else str(serialized)
self.logger.log_event("tool_start", name=name, input=_truncate(input_str))
def on_tool_end(self, output, **kwargs):
self.logger.log_event("tool_end", output=_truncate(output))
# Agent actions
def on_agent_action(self, action, **kwargs):
try:
self.logger.log_event(
"agent_action",
tool=getattr(action, 'tool', None),
tool_input=_truncate(getattr(action, 'tool_input', None)),
log=_truncate(getattr(action, 'log', None)) if self.logger.show_llm_thoughts else None,
)
except Exception:
self.logger.log_event("agent_action")
def on_agent_finish(self, finish, **kwargs):
try:
out = getattr(finish, 'return_values', {}).get('output')
self.logger.log_event("agent_finish", output=_truncate(out))
except Exception:
self.logger.log_event("agent_finish")
def _truncate(obj: Any, limit: int = 800) -> Any:
try:
s = obj if isinstance(obj, str) else json.dumps(obj, ensure_ascii=False)
return s if len(s) <= limit else (s[:limit] + "")
except Exception:
try:
s = str(obj)
return s if len(s) <= limit else (s[:limit] + "")
except Exception:
return None

View File

@@ -5,6 +5,7 @@ from googleapiclient.http import MediaFileUpload
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import InstalledAppFlow
from google.auth.transport.requests import Request
from event_logger import get_logger
class GoogleDriveUploader:
def __init__(self, config_path='./config.json'):
@@ -52,6 +53,7 @@ class GoogleDriveUploader:
"""
파일을 Google Drive에 업로드
"""
logger = get_logger()
if self.service is None:
raise RuntimeError('Google Drive API가 초기화되지 않았습니다. credentials.json과 folder_id를 설정하세요.')
@@ -71,11 +73,15 @@ class GoogleDriveUploader:
media_body=media,
fields='id'
).execute()
print(f'파일 업로드 완료: {file_name} (ID: {file.get("id")})')
return file.get('id')
fid = file.get('id')
print(f'파일 업로드 완료: {file_name} (ID: {fid})')
if logger:
logger.log_event("drive_upload", name=file_name, id=fid)
return fid
except Exception as e:
print(f'업로드 실패: {e}')
if logger:
logger.log_event("drive_upload_error", name=file_name, error=str(e))
return None
def upload_data_as_json(self, data, filename='collected_data.json'):
@@ -83,6 +89,7 @@ class GoogleDriveUploader:
데이터를 JSON 파일로 변환하여 업로드
"""
import tempfile
logger = get_logger()
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(data, f, ensure_ascii=False, indent=2)
@@ -90,9 +97,19 @@ class GoogleDriveUploader:
try:
file_id = self.upload_file(temp_path, filename)
logger = get_logger()
if logger and logger.preview_saved_files:
try:
with open(temp_path, 'r', encoding='utf-8') as rf:
content = rf.read(logger.preview_limit)
logger.log_event("file_preview", name=filename, preview=content)
except Exception:
pass
return file_id
finally:
os.unlink(temp_path)
if logger:
logger.log_event("tempfile_cleanup", path=temp_path)
def list_files(self):
"""
@@ -109,9 +126,15 @@ class GoogleDriveUploader:
).execute()
items = results.get('files', [])
logger = get_logger()
if logger:
logger.log_event("drive_list", count=len(items))
return items
except Exception as e:
print(f'파일 목록 조회 실패: {e}')
logger = get_logger()
if logger:
logger.log_event("drive_list_error", error=str(e))
return []
class SimpleDriveSaver:
@@ -132,9 +155,22 @@ class SimpleDriveSaver:
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
print(f'데이터 저장 완료: {filepath}')
logger = get_logger()
if logger:
logger.log_event("file_saved", path=filepath, bytes=os.path.getsize(filepath))
if logger.preview_saved_files:
try:
with open(filepath, 'r', encoding='utf-8') as rf:
preview = rf.read(logger.preview_limit)
logger.log_event("file_preview", path=filepath, preview=preview)
except Exception:
pass
return filepath
except Exception as e:
print(f'저장 실패: {e}')
logger = get_logger()
if logger:
logger.log_event("file_save_error", path=filepath, error=str(e))
return None
def save_text_data(self, data, filename='collected_data.txt'):
@@ -150,9 +186,15 @@ class SimpleDriveSaver:
else:
f.write(str(data))
print(f'텍스트 데이터 저장 완료: {filepath}')
logger = get_logger()
if logger:
logger.log_event("file_saved", path=filepath, bytes=os.path.getsize(filepath))
return filepath
except Exception as e:
print(f'저장 실패: {e}')
logger = get_logger()
if logger:
logger.log_event("file_save_error", path=filepath, error=str(e))
return None
def save_to_drive_simple(data, filename='collected_data.json', mount_path='/content/drive/MyDrive/AI_Data'):

View File

@@ -3,6 +3,7 @@ import json
from model_downloader import download_model
from ai_agent import AIAgent
import argparse
from event_logger import init_from_config, get_logger
def main():
parser = argparse.ArgumentParser(description='AI 웹 정보 수집 시스템')
@@ -19,8 +20,10 @@ def main():
with open(args.config, 'r') as f:
config = json.load(f)
# 2. 모델 다운로드 (필요한 경우)
# 2. 로깅 초기화 및 모델 다운로드 (필요한 경우)
logger = init_from_config(config)
print("모델 확인 중...")
logger.log_event("model_check")
model, tokenizer = download_model(args.config)
# 모델 로딩은 AIAgent에서 수행하므로, 다운로드만 성공해도 계속 진행
@@ -42,22 +45,28 @@ def main():
with open(args.config, 'w') as f:
json.dump(config, f, indent=2)
print(f"저장 경로 설정됨: {args.save_path}")
logger.log_event("save_path_set", path=args.save_path)
# 3. AI 에이전트 초기화
print("AI 에이전트 초기화 중...")
logger.log_event("agent_init_start")
agent = AIAgent(args.config)
logger.log_event("agent_init_done")
# 3. 주제 결정
if args.auto_topics or args.topics is None:
print("AI가 스스로 주제를 선정합니다...")
topics = agent.generate_topics(num_topics=3)
print(f"선정된 주제: {topics}")
logger.log_event("auto_topics", topics=topics)
else:
topics = args.topics
logger.log_event("user_topics", topics=topics)
# 4. 정보 수집 실행
print(f"다음 주제들에 대해 정보를 수집합니다: {topics}")
results = agent.collect_information(topics)
logger.log_event("collect_done", topic_count=len(topics))
# 5. 결과 출력
print("\n=== 수집 결과 ===")
@@ -68,6 +77,7 @@ def main():
# 6. 정리
agent.close()
logger.log_event("run_complete", message="Program finished")
print("프로그램 완료")
if __name__ == "__main__":

View File

@@ -3,6 +3,7 @@ import json
from typing import Tuple, Optional
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from event_logger import get_logger
def download_model(config_path: str = './config.json') -> Tuple[Optional[object], Optional[AutoTokenizer]]:
"""
@@ -22,6 +23,9 @@ def download_model(config_path: str = './config.json') -> Tuple[Optional[object]
os.makedirs(local_path, exist_ok=True)
print(f"모델 {model_name}{local_path}에 다운로드 중...")
logger = get_logger()
if logger:
logger.log_event("model_download_start", model=model_name, path=local_path)
try:
# 인증 토큰(필요 시) 지원: 환경변수 HF_TOKEN 사용
@@ -45,9 +49,13 @@ def download_model(config_path: str = './config.json') -> Tuple[Optional[object]
print("토크나이저 확인 실패(계속 진행): 로컬 경로에 tokenizer 파일이 없을 수 있습니다.")
print(f"모델 다운로드 완료: {local_path}")
if logger:
logger.log_event("model_download_done", path=local_path)
return None, tokenizer
except Exception as e:
print(f"모델 다운로드 실패: {e}")
if logger:
logger.log_event("model_download_error", error=str(e))
return None, None
if __name__ == "__main__":

View File

@@ -139,6 +139,19 @@ os.environ["HF_TOKEN"] = "hf_********************************"
!free -h
```
### 5.4 이벤트 로그(JSONL)
- 실행 시 `./logs/` 폴더에 `run_YYYYMMDD_HHMMSS_xxxxxx.jsonl` 파일이 생성됩니다.
- 각 단계(모델 다운로드, 에이전트/LLM 호출, 도구 실행, 스크래핑 시작/완료, 파일 저장 등)가 구조화된 레코드로 기록됩니다.
- 실시간 확인 예시:
```bash
tail -f logs/run_*.jsonl
```
- LLM의 내부 추론(Thought) 노출은 기본 비활성화입니다. 필요 시 다음 환경변수로 활성화할 수 있습니다(권장하지 않음):
```bash
export AIWS_SHOW_THOUGHTS=1
```
## 6. 문제 해결
### 6.1 모델 다운로드 실패

View File

@@ -3,6 +3,7 @@ from bs4 import BeautifulSoup
import json
import time
import os
from event_logger import get_logger
try:
from selenium import webdriver
@@ -64,7 +65,10 @@ class WebScraper:
"""
웹사이트에서 정보를 수집합니다.
"""
logger = get_logger()
try:
if logger:
logger.log_event("scrape_start", url=url)
if self.use_selenium and self.driver is not None:
self.driver.get(url)
time.sleep(self.delay)
@@ -88,9 +92,13 @@ class WebScraper:
'content': text_content[:5000],
'timestamp': time.time()
}
if logger:
logger.log_event("scrape_done", url=url, title=title, size=len(data['content']))
return data
except Exception as e:
print(f"스크래핑 실패: {url} - {e}")
if logger:
logger.log_event("scrape_error", url=url, error=str(e))
return None
def crawl_multiple_pages(self, start_urls, keywords=None):